Equivalence of Spectral Projections in Semiclassical Limit and a Vanishing Theorem for Higher Traces in K-theory
نویسنده
چکیده
In this paper, we study a refined L version of the semiclassical approximation of projectively invariant elliptic operators with invariant Morse type potentials on covering spaces of compact manifolds. We work on the level of spectral projections (and not just their traces) and obtain an information about classes of these projections in K-theory in the semiclassical limit as the coupling constant μ goes to zero. An important corollary is a vanishing theorem for the higher traces in cyclic cohomology for the spectral projections. This result is then applied to the quantum Hall effect. We also give a new proof that there are arbitrarily many gaps in the spectrum of the operators under consideration in the semiclassical limit.
منابع مشابه
Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملIndividual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملSpectral statistics in chaotic systems with a point interaction
We consider quantum systems with a chaotic classical limit that are perturbed by a point-like scatterer. The spectral form factor K(τ) for these systems is evaluated semiclassically in terms of periodic and diffractive orbits. It is shown for order τ 2 and τ 3 that off-diagonal contributions to the form factor which involve diffractive orbits cancel exactly the diagonal contributions from diffr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003